from transformers import AutoProcessor, SeamlessM4Tv2Model processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") def translator(subtitle_line: str, target_language: str) -> str: # Ensure the model and processor are loaded to the GPU model.to('cuda') # Move input tensors to GPU text_inputs = processor(text=subtitle_line, src_lang="eng", return_tensors="pt") text_inputs = {key: value.to('cuda') for key, value in text_inputs.items()} # Generate output tokens on GPU output_tokens = model.generate(**text_inputs, tgt_lang=target_language, num_beams=5, generate_speech=False) # Decode the result return processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)